THE TWO-PARAMETER LINEAR FREE ENERGY TREATMENT OF THE SUBSTITUENT EFFECTS ON THE HALF-WAVE REDUCTION POTENTIALS AND n,π^* TRIPLET ENERGIES OF AROMATIC KETONES. A TEST OF THE VALIDITY OF THE APPROACH.

William J. Leigh, Donald R. Arnold,* and Kim M. Baines Department of Chemistry Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3

The half-wave reduction potentials of fluoro- and thiomethyl-substituted benzophenones and the n, π^* triplet energies of the fluoro-substituted derivatives are found to agree quite closely with values predicted using empirical relations comprised of Hammett σ values and σ values; the lowest triplet states of the thiomethyl-substituted derivatives are shown to be π, π^* .

In the course of our investigation of the effect of merostabilization on the half-wave reduction potential $(E_{l_2}^{red})$ and n,π^* triplet energy (E_T) of benzophenone, it was necessary to evaluate the nature of the "normal" substituent effect (i.e. in the absence of merostabilization) on these quantities.¹ For symmetrically disubstituted (i.e. $4,4'-X_2$ and $3,3'-X_2$) benzophenones, E_T and $E_{l_2}^{red}$ were found to correlate with two-parameter relations comprised of Hammett σ values and a set of parameters (σ ·) reflecting substituent effects on benzylic radical stabilities (equations (1) and (2), respectively).

(1) $E_{T}(\text{kcal mol}^{-1}) = 69.7 - (1.3\Sigma\sigma + 2.2\Sigma\sigma)$ (2) $E_{L_{T}}^{\text{red}}(\text{eV}) = 2.21 - (8.4\Sigma\sigma + 2.0\Sigma\sigma)/23.03$

The relative contributions from polar and radical-stabilizing factors to the substituent effects on E_T and $E_{l_2}^{red}$ can be inferred from the coefficients in equations (1) and (2). It is particularly significant that radical-stabilizing factors contribute about equally to the substituent effects on E_T and $E_{l_2}^{red}$. This is presumably due to the fact that the π^* -orbital is singly-occupied in both species; the diphenylmethyl radical has been used as the model for this orbital in benzophenone.² Support for the validity of the model is provided by the similarities in the spin densities at the ring carbons in the radical anion³ and the diphenylmethyl radical⁴ as measured by esr spectroscopy. Recent results for the benzophenone n,π^* triplet⁵ are also suggestive.

Since this sort of treatment of the substituent effects on E_T and $E_{\frac{1}{2}}^{red}$ for aromatic ketones is, as far as we know, unprecedented, we felt it desirable to test the validity of our approach by using (1) and (2) to predict E_T and $E_{\frac{1}{2}}^{red}$ for a few substituted benzophenones and comparing our predictions to experimentally determined values. We therefore chose four benzophenones $(\underline{1a},\underline{0})$ bearing substituents whose σ and σ · values are unique. Fluorine $(\underline{1a},\underline{b})$ was chosen since it appears to be the only substituent which destabilizes a benzylic radical in the para-position⁶ (σ ·= -.08), while being mildly electron-withdrawing in the polar sense (σ = .06). Thiomethyl ($\underline{1c},\underline{d}$)⁷ on the other hand, is a strong radical-stabilizing group⁶ (σ ·= .43), while being electronically neutral (σ = 0). We assume merostabilization to be relatively unimportant in these monosubstituted derivatives.

Half-wave reduction potentials of <u>la-d</u> were measured in acetonitrile solution by cyclic voltammetry, while the triplet energies were calculated from the positions of the short wavelength 0-0 band maxima in the phosphorescence emission spectra in EPA⁹ at 77K. These results are collected in Table 1, along with the values of E_T and $E_{l_2}^{red}$ predicted using equations (1) and (2).

<u>Table 1</u>. Predicted and observed^a half-wave reduction potentials $(E_{\frac{1}{2}}^{red}, eV)$ and triplet energies $(E_{\pi}, kcal mol^{-1})$ of substituted benzophenones <u>la</u>-<u>d</u>.

<u>1</u> b	Х,Ү	$-E_{\frac{1}{2}}^{red}$ (pred) ^c	$-E_{\frac{1}{2}}^{red}$ (expt) ^d	E _T (pred) ^e	E_{T}^{f} (expt) ^f	
a	H,F	2.19	2.20	69.8	69.8	
b	F,F	2.18	2.19	69.9	70.3	
с	H,SCH3	2.17	2.18	68.7	64.0	
d	sch ₃ , sch ₃	2.14	2.16	67.8	63.9	

^a.Experimental procedures have been reported previously.¹

^b.All substituents are in the *para*-positions.

c.Calculated according to equation (2).

d. In 0.1M TEAP/CH₂CN; vs. Ag/0.1M AgNO₂/0.1M TEAP, 25°C; ±0.02

e.Calculated according to equation (1).

f.From the 0-0 band maxima in the phosphorescence emission spectra (EPA, 77K); ±0.2.

Excellent agreement between the predicted and experimental values of the half-wave reduction potentials of $\underline{la}-\underline{d}$ is observed in all cases. The predictive value of equation (2) is most apparent for \underline{lc} and \underline{ld} , since in these cases consideration of polar factors (i.e. σ values) alone would have

lead to the prediction that $E_{l_2}^{red}$ for these compounds should be the same as that for benzophenone itself (2.21 eV).

Good agreement is also observed between the predicted and experimental n, π^* triplet energies of <u>la</u> and <u>lb</u>. The triplet energies of the thiomethyl derivatives <u>lc</u> and <u>ld</u> however, are significantly less than those predicted by equation (1). This is due to the lowest triplet states of these derivatives being π, π^* in nature; we have several pieces of evidence in support of this conclusion.

(i) The long wavelength n,π^* transition which is visible in the absorption of <u>lc</u>,<u>d</u> in hydrocarbon solvents is masked by an intense $CT-\pi,\pi^*$ absorption¹⁰ in alcohol solution. The solvent shift (hexane/ethanol) of this intense band is ca. 2100 cm⁻¹.

(ii) The vibronic band separation $(\Delta \overline{\nu}_{0-1})$ in the phosphorescence emission spectrum of an n, π^* triplet ketone corresponds closely to the carbonyl stretching frequency in the ir spectrum of the compound, while in π , π^* triplets, $\Delta \overline{\nu}_{0-1}$ is considerably less than this.¹¹ For <u>lc</u> and <u>ld</u>, $\Delta \overline{\nu}_{0-1} = 1490$ and 1350 cm⁻¹ respectively; this can be compared to the spacings in the emission spectra of 4-dimethylaminobenzophenone (1350 cm⁻¹) and Michler's ketone (1240 cm⁻¹), both of which are known to have CT- π , π^* lowest triplet states¹¹.

(iii) The phosphorescent lifetimes of <u>lc</u>,<u>d</u> (47 and 31 msec)¹² are characteristic of π, π^* triplet states¹⁰ (compare these to 170 and 90 msec for 4-dimethylaminobenzophenone and Michler's ketone)¹².

The characterization of the lowest triplet states of <u>lc</u> and <u>ld</u> as π, π^* completes our understanding of the effect of electron-donating substituents (CH₃, OCH₃, SCH₃, N(CH₃)₂) on the ordering of the n, π^* and π, π^* triplet states in aromatic ketones. In benzophenone, inversion occurs with thiomethyl substitution. On the other hand, in phenyl alkyl ketones, in which the n, π^* and π, π^* triplet states lie closer in energy in the parent compound, inversion occurs with methyl substitution.¹³

The two-parameter approach provides a much clearer understanding of the effects of substituents on the n, π^* triplet energy and half-wave reduction potential of benzophenone. The predictive value of the approach is succinctly demonstrated by the good agreement observed between calculated and experimental values of E_{π} and E_{λ}^{red} for these derivatives.

<u>Acknowledgement</u> This work was supported by a grant from the Natural Sciences and Engineering Research Council (Canada). KMB wishes to thank the Atlantic Provinces Inter-University Committee on the Sciences (APICS) for financial support.

REFERENCES AND NOTES

- W. J. Leigh, D. R. Arnold, R. W. R. Humphreys, and P. C. Wong, <u>Can. J.</u> Chem., 58, 2537 (1980).
- A. Streitwieser, Jr., Molecular orbital theory for organic chemists.
 J. Wiley and Sons, Inc., New York, 1962, Chapter 7.
- 3. H. R. Falle and F. C. Adam, Can. J. Chem., 44, 1387 (1966).
- A. R. Bassindale, A. J. Bowles, A. Hudson, R. A. Jackson, K. Schreiner, and A. Berndt, Tetrahedron Letters, 3185 (1973).
- 5. J. A. Mucha and D. W. Pratt, Chem. Phys. Lett., 37, 40 (1976).
- 6. a) X. Creary, J. Org. Chem., 45, 280 (1980).
 - b) J. W. Timberlake, A. W. Garner, and M. L. Hodges, <u>Tetrahedron Lett</u>., 309 (1973).
- 7. <u>lc</u> and <u>ld</u> were synthesized by Friedel-Crafts acylation of benzene and thioanisole with 4-(thiomethyl)benzoyl chloride. <u>lc</u>: mp = 76-77.5°C⁸. ld: mp = 125-126°C⁸.
- A. Schomberg, R. Abelsdorff, H. Kirchrath, W. Malchow, and A. Rosenbach, Annalen, <u>436</u>, 205 (1924).
- 9. ether:isopentane:alcohol (5:5:2).
- 10. G. Porter and P. Suppan, Pure Appl. Chem., 9, 499 (1964).
- 11. R. N. Griffin, Photochem. Photobiol., 7, 159 (1968).
- Phosphorescent lifetimes were determined from the rates of phosphorescence decay in degassed EPA at 77K.
- P. J. Wagner, A. E. Kemppainen, and H. N. Schott, <u>J. Am. Chem. Soc.</u>, <u>95</u>, 5604 (1973).

(Received in USA 15 September 1981)